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Bid, Bax, and Lipids Cooperate
to Form Supramolecular Openings
in the Outer Mitochondrial Membrane

teins may generally act in concert with Bax or Bak (Lind-
sten et al., 2000; Wei et al., 2001; Zong et al., 2001).

How Bcl-2 family proteins regulate mitochondrial
outer membrane permeability is controversial (Kelekar
and Thompson, 1998). Several laboratories have at-
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plexity of the cellular milieu.4955 Directors Place
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vitro systems of decreasing complexity. Prior studiesPetersgasse 12
A-8010 Graz (Bossy-Wetzel et al., 1998; Kluck et al., 1997, 1999; Ku-

wana et al., 1998; von Ahsen et al., 2000) explored theAustria
release of mitochondrial proteins within whole cells and
from isolated organelles. Here, we describe simplified
systems consisting of isolated organellar membranesSummary
and liposomes that faithfully reproduced the behavior
of whole mitochondria. Our data clarify the molecularBcl-2 family proteins regulate the release of proteins

like cytochrome c from mitochondria during apopto- requirements of the membrane permeabilization pro-
cess and the functions of the Bcl-2 family.sis. We used cell-free systems and ultimately a vesicu-

lar reconstitution from defined molecules to show that
outer membrane permeabilization by Bcl-2 family pro- Results
teins requires neither the mitochondrial matrix, the
inner membrane, nor other proteins. Bid, or its BH3- Apoptotic Function of Bid and Bax Proteins
domain peptide, activated monomeric Bax to produce Reproduced with Mitochondrial Outer Membranes
membrane openings that allowed the passage of very We reconstituted the apoptotic process of protein re-
large (2 megadalton) dextran molecules, explaining the lease from mitochondria, and its control by Bcl-2 family
translocation of large mitochondrial proteins during proteins, using isolated outer mitochondrial mem-
apoptosis. This process required cardiolipin and was branes. Hypotonic treatment of the mitochondria sepa-
inhibited by antiapoptotic Bcl-xL. We conclude that rated many of the outer membranes from the mitoplasts,
mitochondrial protein release in apoptosis can be me- apparently intact (Figures 1A and 1B, asterisks). Isolated
diated by supramolecular openings in the outer mito- outer membranes had a vesicular structure with roughly
chondrial membrane, promoted by BH3/Bax/lipid in- the same diameter (�0.5 �m) and ellipsoidal shape as
teraction and directly inhibited by Bcl-xL. intact mitochondria (Figures 1C and 1D) and were re-

ferred to as outer membrane vesicles (OMVs). Control
Introduction light membrane vesicles (LMVs) were smaller and more

heterogeneous (Figures 1E and 1F). OMVs were en-
During apoptosis, Bcl-2 family proteins regulate the re- riched in outer membrane VDAC (Figure 1G) and virtually
lease of cytochrome c (Finucane et al., 1999; Jurgens- devoid of contamination with inner membranes (ANT),
meier et al., 1998; Kluck et al., 1997; Luo et al., 1998; but contaminated to varying degrees with ER mem-
Yang et al., 1997) and other intermembrane space pro- branes (ribophorin). In contrast, LMVs contained only a
teins, including Smac/DIABLO (Du et al., 2000; Verhagen trace of VDAC.
et al., 2000; O. von Ahsen and D.D. Newmeyer, submit- When the outer membrane isolation was performed
ted). The Bcl-2 family consists of proapoptotic members in the presence of the protein GST, a proportion of the
(e.g., Bid, Bax, and Bak), which trigger mitochondrial GST was retained in the final membrane fraction. Much
protein release, and antiapoptotic members (e.g., Bcl-2 of this was trapped in the lumen of the OMVs, as it was
and Bcl-xL), which inhibit it. Some of the proapoptotic protected from protease digestion unless the mem-
proteins have multiple Bcl-2-homology domains (“BH1-3” branes were solubilized by CHAPS (not shown). Thus,
or “multidomain” proteins, including Bax and Bak) and OMVs could entrap macromolecules.
some only one (“BH3-only” proteins, including Bid, Bim,
Bad, and others). The BH1-3 proteins may be the primary Activities of Recombinant Proteins and Peptides
effectors of apoptotic cell death, and the BH3-only pro- on Mitochondria

To study the apoptotic permeabilization of outer mito-
chondrial membranes, we used protease-cleaved Bid5 Correspondence: don@liai.org
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Figure 1. Outer Membranes Are Stripped off
from the Mitoplasts in One Piece

(A) After the second hypotonic treatment, the
mitochondrial suspension was negatively
stained and examined by EM.
(B–D) Thin-section (80 nm) images of the
same suspension. The electron-dense struc-
tures are mitoplasts or whole mitochondria,
while the electron-transparent structures (as-
terisks) are outer membrane vesicles, seen
more clearly in the purified outer membrane
preparations ([C], negative stain; [D], thin sec-
tion). Wrinkling in the OMVs in (C) is from
flattening onto the grid.
(E and F) Negatively stained (E) and thin-sec-
tioned (F) LMVs also displayed unilamellar
profiles, but smaller. Bars represent 500 nm.
(G) OMVs are free of inner membrane-specific
ANT. The purity of OMV and LMV prepara-
tions was analyzed by immunoblotting with
antibodies to marker proteins: VDAC for the
mitochondrial outer membrane, ANT for the
inner membrane, and ribophorin for the ER
membrane. HM and LM fractions were loaded
on the same gel for comparison. VDAC was
enriched in OMVs but undetectable in LMs
and LMVs. ANT was absent from the OMVs.
An apparently irrelevant crossreacting band
(asterisk) seen in the LMs and LMVs migrates
slightly faster than ANT.

(N/C-Bid; von Ahsen et al., 2000) and an activated oligo- well (Figure 3). Release occurred without gross disrup-
tion of the membranes, as none of the N/C-Bid-perme-merized Bax (OG-Bax). Concentrations of 20–40 nM for

N/C-Bid and OG-Bax were required for nearly complete abilized vesicles (Figures 4B, 4E, and 4G) differed in
ultrastructure from the untreated OMVs (Figures 4A, 4D,cytochrome c release from Xenopus mitochondria in a

3 hr incubation (Figures 2A and 2C). Tumor cells typically and 4F). OG-Bax treatment also produced no observable
membrane discontinuities (Figure 4C). A closer examina-contain 200–600 nM Bax (calculated from data of John

Reed and colleagues, personal communication), and tion of en face images from thicker sections also showed
that neither the control (GST-treated) nor the N/C-Bid-such high concentrations caused full cytochrome c re-

lease from Xenopus mitochondria within 10 min (not treated OMVs contained visible holes (Figures 4H and
4J). The efficient release of 2000 kDa dextrans in theshown), as observed in apoptotic HeLa cells (Goldstein

et al., 2000). N/C-Bid-induced cytochrome c release was absence of permanent disruptions in the lipid bilayer
implies that Bid and Bax produced openings of supra-blocked by low concentrations of Bcl-xL (Figure 2B; 370

nM for the Bcl-xL�C and 110 nM for the full-length pro- molecular size in the outer membranes.
tein). However, higher concentrations of Bcl-xL (�10 �M)
were required for inhibition of cytochrome c release Dextran Release from Liposomes Formed
induced by OG-Bax (Figure 2C). from Extracted Organellar Lipids

To determine whether N/C-Bid or Bax alone could pro-
mote dextran release, we used protein-free liposomesFluorescein-Dextran Release from OMVs

and LMVs (Figure 5A) prepared from extracted mitochondrial or
microsomal lipids (M or ER liposomes, respectively).When N/C-Bid and OG-Bax were added to OMVs pre-

viously loaded with fluorescein-dextrans (F-dextrans), OG-Bax promoted the release of even large macromole-
cules (Figure 5B) when added at concentrations similarthe F-dextrans were released in a concentration-depen-

dent manner (Figures 2D and 3B). Release was inhibited to those effective on intact mitochondria (Figure 2C) in
the absence of any other proteins (including VDAC).by Bcl-xL�C and Bcl-xL (Figure 2E) at the same concen-

trations effective with mitochondria (Figure 2B); a mu- Release from ER liposomes was less efficient than from
M liposomes (Figure 5B), arguing that the lipid composi-tant Bcl-xL protein (G138A) was ineffective (Figure 2F).

LMVs did not release dextrans in response to Bid (Figure tion of mitochondrial membranes is important.
Neither N/C-Bid nor monomeric Bax added alone re-2D) but did respond to OG-Bax, although less efficiently

than OMVs (Figure 3D, far right). leased dextrans from M or ER liposomes (Figures 5B and
5C). However, added together, these proteins promotedSurprisingly, 10 and 2000 kDa dextrans (sizes con-

firmed by gel filtration; not shown) were released equally dextran release effectively from M, but not ER, lipo-



Bcl-2 Family and Mitochondrial Protein Release
333

Figure 2. Outer Membrane Vesicles (OMVs) Reproduce Bax- and Bid-Induced Macromolecular Release

(A–C) Recombinant N/C-Bid and OG-Bax induced the complete release of cytochrome c from Xenopus mitochondria. Proteins were added
at the indicated concentrations to isolated mitochondria in buffer. After an incubation for 3 hr at 22�C, cytochrome c release was detected
by immunoblot analysis of the supernatant and pellet from each sample.
(D) N/C-Bid induced the release of fluorescein-dextran (10 kDa) from OMVs (top) and LMVs (bottom). N/C-Bid (left) released fluorescein-
dextran in a concentration-dependent manner (see Figure 3 for a more detailed titration), and the release was blocked by Bcl-xL�C. Fluorescein-
dextran-loaded LMVs did not respond to N/C-Bid (bottom). OG-Bax induced fluorescein-dextran (10 kDa) release (right) from OMVs (top), and
the release was inhibited by full-length Bcl-xL. LMVs (bottom) also responded to OG-Bax, but less efficiently than OMVs.
(E) Bid-induced dextran release from OMVs was inhibited by Bcl-xL�C and Bcl-xL at concentrations similar to those inhibiting cytochrome c
release from mitochondria (B).
(F) A mutant Bcl-xL (G138A) was unable to inhibit permeabilization. Values shown are mean � standard deviation from triplicate data. Three
other independent experiments gave similar results.

somes (Figures 5B and 5D). Hence, N/C-Bid cannot act Dextran Release from Defined Liposomes:
The Requirement for Cardiolipinalone to permeabilize membranes, but does so in combi-

nation with monomeric Bax. Moreover, lipid composi- Figure 5B shows a marked effect of the source of ex-
tracted lipids. Whole mitochondria (inner and outertion is critical. Importantly, even the very large 2 MDa

dextran molecules were released from M liposomes (Fig- membranes combined) contained substantial levels of
cardiolipin, essentially accounting for the difference be-ures 5C and 5D), and dextran release was inhibited by

Bcl-xL at the same concentrations active on whole mito- tween M and ER liposomes. Confirming this, we found
that addition of cardiolipin to the ER lipids restored re-chondria and OMVs. Thus, protein-free liposomes and

Bcl-2 family proteins alone (Figure 5) can reproduce the sponsiveness of ER liposomes to Bid/Bax mixtures (not
shown).macromolecular release properties of intact mitochon-

dria and OMVs (Figures 2 and 3). We formed liposomes with the lipid composition (ex-
cluding cholesterol) of Xenopus mitochondria, as deter-Although Bcl-xL inhibited dextran release induced

both by OG-Bax and by Bid/Bax synergy, the inhibition mined by thin-layer chromatography: phosphatidylcho-
line, 46.5% � 2.3%; phosphatidylethanolamine, 28.4% �was much less complete with OG-Bax and indeed could

be overcome by the addition of moderate concentra- 3.5%; phosphatidylinositol, 8.9% � 2.3%; phosphatidyl-
serine, 8.9% � 3.0%; and cardiolipin, 7.3% � 0.6%.tions of OG-Bax (Figure 5C). This suggests that the BH3-

only, rather than the BH1-3, proteins may be the primary These defined liposomes responded well to a mixture
of N/C-Bid and monomeric Bax, but not to either proteinphysiological target of Bcl-xL and its antiapoptotic rela-

tives, as others have argued (Cheng et al., 2001). alone (Figures 6A–6D). Bcl-xL blocked dextran release
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Figure 3. Small and Very Large Dextrans Are Released from OMVs by N/C-Bid or OG-Bax with the Same Efficiency

N/C-Bid or OG-Bax were added at the indicated concentrations to OMVs loaded with 10 kDa or 2000 kDa dextrans.
(A) During a 3 hr incubation, 10 and 2000 kDa fluorescein-dextrans were released from OMVs in response to N/C-Bid and OG-Bax, and in all
cases the release was inhibited by Bcl-xL.
(B) 10 and 2000 kDa dextrans were released equally by different concentrations of N/C-Bid and OG-Bax in a 3 hr time period. Values shown
are the mean and range of duplicate data. Two other independent experiments gave similar results.

(Figure 6B) at concentrations similar to those effective membrane targeting of Bid (Lutter et al., 2000), but also
for the permeabilization function of Bax.with M liposomes, OMVs, and mitochondria; mutant Bcl-

xL (G138A) was inactive (Figure 6C). The response of
liposomes to OG-Bax and Bid/Bax mixtures was highly

Massive CHAPS-Stable Bax Oligomerizationdependent on levels of cardiolipin (Figure 6D), but did
Is Not Required for Permeabilizationnot require phosphatidylserine, another negatively
of M Liposomescharged lipid (not shown).
We analyzed Bax complexes by gel filtration (Figure 7A).
Bax, when not treated with detergents such as octylglu-
coside, was essentially monomeric in solution, whetherActivation of Bax by BH3 Peptide; Dependence
or not N/C-Bid (Figure 7A) or CHAPS (not shown) wereon Cardiolipin
added. However, in mitochondrial membranes, N/C-BidSynthetic BH3-domain peptides can induce cytochrome
shifted nearly all of the membrane-associated Bax to

c release from isolated mitochondria (Cosulich et al.,
higher-order CHAPS-stable complexes, confirming pre-

1997; Polster et al., 2001). Xenopus mitochondria re-
vious reports (Antonsson et al., 2001). Similar results

leased cytochrome c, and OMVs released both 10 kDa were obtained with OMVs, consistent with our other
and 2000 kDa dextrans, in response to wild-type Bid data showing that OMVs mimicked mitochondria in their
and Bad BH3 peptides at similar concentrations, but response to N/C-Bid.
not to the mutant forms of the peptides (not shown); in Surprisingly, however, massive N/C-Bid-induced Bax
both cases this release was inhibited by Bcl-xL. oligomerization was not seen in liposomes. On the other

Importantly, a wild-type Bid BH3 peptide cooperated hand, the amount of �100 kDa (tetramer-size) oligomers
with monomeric Bax to induce dextran release from M did correlate somewhat with permeabilization activity.
but not ER liposomes (Figure 6E). Thus, N/C-Bid seems In M liposomes, the addition of N/C-Bid produced a
to act primarily through its BH3 domain. Moreover, partial shift from the monomer to the �100 kDa peak.
membrane permeabilization is apparently accomplished In OMVs, Bcl-xL caused Bax to shift almost entirely to
by activated Bax, rather than by independent membrane monomer size; however, in M liposomes, only a partial
interactions of both N/C-Bid and Bax. Again, Bcl-xL in- shift toward the monomeric form was seen. These
hibited this dextran release. Finally, Figure 6E suggests changes were less evident in ER liposomes. We con-
that cardiolipin was required even in the absence of clude that massive CHAPS-stable Bax oligomerization
the non-BH3 portions of Bid. Experiments with defined is unnecessary for the permeabilization of M liposomes
liposomes showed a similar cardiolipin dependence (not by Bid/Bax mixtures. Moreover, the Bax oligomers pres-

ent in ER liposomes are insufficient for membrane per-shown). Thus, cardiolipin is important not merely for the
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Figure 4. Bid and Bax Produce No Detect-
able Morphological Changes in OMVs, De-
spite Virtually Complete Release of 2000 kDa
Dextrans

OMVs treated with N/C-Bid (B) or OG-Bax
(C) were indistinguishable from control GST-
treated OMVs (A) by negative-stain EM. Thin-
section electron microscopy showed a simi-
lar lack of morphological changes in OMVs
treated with GST (D and F) or N/C-Bid (E and
G). Careful examination of en face images
from thicker sections ([H], GST control; [J],
N/C-Bid treated) revealed a lack of visible
membrane discontinuities. Bars represent
500 nm.

meabilization. Finally, a modest correlation of the �100 Our data show that both pro- and antiapoptotic Bcl-2
family proteins can regulate macromolecular efflux di-kDa peak with permeabilization suggests a role for tetra-

mer-sized complexes (which also comprised a portion rectly at the mitochondrial outer membrane. Bax formed
supramolecular openings in mitochondrial outer mem-of the oligomers seen in mitochondria and OMVs).

The amount of Bax associated with M liposomes was branes and liposomes, suggesting that the ion channel
activity of Bcl-2 family proteins (Antonsson et al., 1997;unchanged in the presence of N/C-Bid or Bcl-xL (Figure

7B). Moreover, similar amounts of Bax were recovered Minn et al., 1997; Schendel et al., 1997, 1999) may be
irrelevant for mitochondrial protein release in apoptosis.in M and ER liposomes (Figure 7A). Thus, although

cardiolipin and N/C-Bid were essential for Bax-induced Furthermore, our results show that neither swelling of
the mitochondrial matrix and inner membrane (Marzo etpermeabilization, they were not required for the mem-

brane association of Bax; moreover, Bcl-xL blocked per- al., 1998; Narita et al., 1998; Shimizu et al., 1996; Vander
Heiden et al., 1997; Zamzami et al., 1996) nor, indeed,meabilization without altering the binding of Bax to

membranes. any other process requiring ANT or the inner membrane
is required for Bid/Bax-induced membrane permeabili-
zation. Similarly, prior studies on cells and mitochondriaDiscussion
concluded that cytochrome c release can take place in
the absence of permeability transition, matrix swelling,To investigate the molecular mechanisms of cytochrome

c release from mitochondria in apoptosis, we developed or outer membrane rupture (Bossy-Wetzel et al., 1998;
Eskes et al., 1998; Kluck et al., 1997, 1999; von Ahsencell-free systems that respond faithfully to pro- and anti-

apoptotic Bcl-2 family proteins under near-physiological et al., 2000).
We conclude that permeabilization requires only theconditions. Using resealed vesicles (OMVs) formed from

mitochondrial outer membranes, we established a interaction of Bcl-2 family proteins such as Bax and Bid
with the outer membrane. Other mitochondrial proteins,benchmark for judging the responsiveness of liposome-

based systems. Dextran release from OMVs, like cyto- including VDAC, are not required for protein efflux. How-
ever, in principle other proteins could modulate the func-chrome c release from intact mitochondria (Kluck et al.,

1997), was nearly complete, required similar concentra- tion or membrane localization of Bax, for example by
altering lipid microdomains in the outer membrane ortions of BH3 peptides or recombinant Bcl-2 family pro-

teins, took place at physiological pH and temperature, by modifying Bax postsynthetically.
Recent reports suggested that tBid by itself can per-and displayed a similar time course (not shown). Bax

oligomerization in OMVs followed the same pattern as meabilize mitochondrial outer membranes (Grinberg et
al., 2002; Kudla et al., 2000). However, N/C-Bid alone,in whole mitochondria (Figure 7). Moreover, permeabili-

zation was inhibited by the same concentrations of Bcl- even at concentrations (720 nM) well above those that
activate monomeric Bax (45 nM), could not induce dex-xL effective with whole mitochondria.
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Figure 5. Liposomes Formed from Extracted Mitochondrial Lipids (M Liposomes) Release Dextrans in Response to OG-Bax and Mixtures of
Monomeric Bax and N/C-Bid, whereas Liposomes Prepared from ER Lipids (ER Liposomes) Behave like LMVs

(A) Coomassie blue-stained SDS-12% polyacrylamide gel showing the near-absence of proteins in M liposomes (3000 �g total phospholipids
loaded); the left lane shows OMVs equivalent to 105 �g of phospholipids.
(B) M and ER liposomes were treated with the indicated amounts of OG-Bax (left) or monomeric Bax, N/C-Bid, and Bcl-xL�C (right), and
dextran release measured as above. As with LMVs, the ER liposomes responded modestly, but reproducibly, to OG-Bax, but not to N/C-Bid
or a mixture of monomeric Bax and N/C-Bid.
(C and D) M liposomes released both small and very large dextrans in response to OG-Bax (C) and to mixtures of N/C-Bid and monomeric
Bax (D).

tran release from M liposomes (Figures 5B, 5C, 6B, and trans by truncated Bcl-xL (Basanez et al., 2001), perme-
ability to macromolecules larger than cytochrome c has6C); thus, Bid requires other proteins, such as Bax, to

permeabilize membranes. not been seen in artificial membrane systems. We now
show, however, that Bid and Bax can efficiently releaseWhole mitochondria release proteins of various sizes

in apoptosis. However, except in one recent report very large dextrans from liposomes and OMVs. This
argues that no secondary event, beyond the initial ac-showing release of 10 and (less efficiently) 70 kDa dex-
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Figure 6. OG-Bax and Mixtures of Bax and N/C-Bid Permeabilize Synthetic Liposomes; Cardiolipin Is Required

(A) Liposomes formed from defined lipid mixtures similar to the observed composition of Xenopus egg mitochondrial membranes responded
to OG-Bax or a mixture of N/C-Bid and monomeric Bax.
(B) Bcl-xL and Bcl-xL�C inhibit dextran release at the same concentrations effective in mitochondria, OMVs, and M liposomes (Figures 3B
and 3E).
(C) A mutant Bcl-xL (G138A) does not inhibit dextran release.
(D) Titration of cardiolipin. Except for cardiolipin, the lipid composition was as in (A).
(E) A Bid BH3 domain peptide can activate Bax to induce permeabilization of liposomes; cardiolipin is required. Dextran-loaded M and ER
liposomes were treated with the indicated concentrations of wild-type and (less active) mutant Bid BH3 peptide, monomeric Bax, and Bcl-
xL. The lipid compositions of M and ER liposomes, estimated by thin-layer chromatography, are indicated at the top; note the similarity except
for cardiolipin, which is specific for M liposomes.

tions of Bcl-2 family proteins such as Bid and Bax, is Kluck and D.D.N., unpublished data) and that Bid- or
Bax-induced outer membrane openings allow only arequired for the release of larger proteins from the mito-

chondrial intermembrane space. limited rate of exchange of exogenous cytochrome c
across the outer membrane (Kluck et al., 1999). TogetherWe have shown elsewhere that the membrane perme-

ability caused by Bid or Bax in whole mitochondria can with the present studies, these data argue that Bid and
Bax can activate a subtle mechanism, independent ofbe reversed by the subsequent addition of Bcl-xL (R.M.
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Figure 7. Massive CHAPS-Stable Bax Oligo-
merization and Increased Bax Association
with Membranes Are Unnecessary for Mem-
brane Permeabilization

(A) Analysis of Bax oligomerization. Bid in-
duced massive CHAPS-stable Bax oligomer-
ization in mitochondria and OMVs but not in
solution; limited Bax oligomerization was
seen in liposomes, but this was uncorrelated
with membrane permeabilization. Bax was in-
cubated alone, together with N/C-Bid, or with
both N/C-Bid and Bcl-xL, as indicated; incu-
bations were done in buffer alone or in the
presence of mitochondria, OMVs, M lipo-
somes, or ER liposomes. Concentrations of
recombinant proteins were increased in incu-
bations with OMVs and liposomes, to com-
pensate partially for the �10-fold greater
amount of membrane lipids. Protein concen-
trations were as follows: Mitochondria, 120
nM Bax and 45 nM N/C-Bid; OMVs, 400 nM
Bax, 270 nM N/C-Bid, and 11 �M Bcl-xL; and
M and ER liposomes, 480 nM Bax, 270 nM
N/C-Bid, and 11 �M Bcl-xL. Following incuba-
tions, the membranes were collected by mi-
crofiltration, solubilized with 1.2% CHAPS,
and subjected to gel filtration in the presence
of 1.2% CHAPS.
(B) Bcl-xL or N/C-Bid do not affect the associ-
ation of Bax with M liposomes. The experi-
ment was performed as in Figure 5B, except
that after a 3 hr incubation with the recombi-
nant proteins as indicated, membrane sam-
ples were reisolated and immunoblotted for
Bax. Note also in (A) that the amount of Bax
recovered from M and ER liposomes was sim-
ilar; thus, cardiolipin does not influence Bax
membrane association.

chemical energy and membrane potential, that permits membranes and probably also outer membranes (Ardail
et al., 1990; de Kroon et al., 1997, 1999; Hovius et al.,large macromolecules to escape without permanently

disrupting the lipid bilayer. 1990; Lutter et al., 2000). Our data show that cardiolipin
is important, not merely for the targeting of Bid (LutterThese results are inconsistent with a mechanism in-

volving the formation by Bax of discrete protein chan- et al., 2000) or the membrane association of Bax, but
for Bax function: the amount of Bax associated with Mnels (Saito et al., 2000; Shimizu et al., 1999). However,

might the large-scale action of Bax involve massive and ER liposomes was similar (Figure 7), despite the
absence of cardiolipin in ER lipids, and cardiolipin in-oligomerization (Nechushtan et al., 2001)? Indeed, Bax

oligomerization was induced by N/C-Bid in whole mito- creased dextran release induced by OG-Bax (Figures
5B and 7) and was required for release induced by mix-chondria and OMVs (Figure 7). Surprisingly, however, in

liposomes only the smaller �100 kDa complexes were tures of Bax and BH3 peptide (Figure 6E).
We hypothesize that activated Bax can promote dy-correlated with membrane permeabilization. Thus, while

massive CHAPS-stable Bax oligomers are unnecessary namic localized alterations in the structure of the lipid
bilayer, perhaps forming large transient lipidic pores orfor membrane permeabilization, a certain threshold level

of the �100 kDa complexes may be required. It remains inverted lipid micelles (Hui et al., 1983; Kan, 1993; Ryto-
maa and Kinnunen, 1995; Siegel, 1984). Cardiolipin ispossible that larger oligomers form in liposomes, but

are unstable or dissolved by CHAPS. known to exert “curvature stress” and can form inverted
micelles (Siegel, 1984; Smaal et al., 1987), and thus couldER liposomes were not permeabilized by N/C-Bid and

monomeric Bax (Figure 5B), arguing that mitochondrion- have a pivotal role in the physical process of membrane
permeabilization.specific lipid composition is critical. The signature mito-

chondrial lipid is cardiolipin, which is present in inner The lipid dependence we observed also suggests a
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were �0.5 and 2.0 mg/ml, respectively, by the BCA assay (Pierce),potential mechanism for apoptotic regulation: the con-
using BSA as a standard.trol of mitochondrial outer membrane permeabilization

by molecules that affect the structure of the lipid bilayer,
Recombinant Protein Productione.g., by altering the local concentration of cardiolipin or
Cleaved human Bid (N/C-Bid) was produced using the pGEX-4T-1

by otherwise modulating the ability of lipids to form vector; a thrombin cleavage site was introduced in place of the
altered structures in response to Bax or Bak. A recent caspase cleavage site in the Bid molecule, and six histidines were

inserted at the C terminus (von Ahsen et al., 2000). Protein produc-report showed that tBid becomes localized near contact
tion was induced for 4 hr with 1 mM IPTG in BL21(DE3) cells (Nova-sites in mitochondrial membranes, which may therefore
gen) at 37�C, which were lysed without detergent by sonication. Thebe enriched in cardiolipin (Lutter et al., 2001), in agree-
protein was applied to glutathione-Sepharose (Amersham Phar-ment with membrane subfractionation studies (Ardail et
macia Biotech), eluted with 20 mM glutathione in 50 mM Tris/HCl

al., 1990; Simbeni et al., 1991). Although OMVs lack (pH 8.0), and digested with thrombin (Amersham; 120 U/ml, 22�C
association with inner membranes, they may preserve overnight). In this way, Bid was cleaved internally and from GST at

the same time; the two fragments of the molecule remained associ-such cardiolipin-rich domains.
ated (Chou et al., 1999; not shown). N/C-Bid was then applied toA conundrum posed by our data is that the high
Ni-NTA resin (Qiagen) and eluted with 250 mM imidazole; the con-cardiolipin content of the inner membrane should in
taminating GST was cleared with glutathione-Sepharose. GST pro-theory permit Bax to permeabilize it; nevertheless, the
tein was expressed similarly from BL21(DE3) harboring pGEX-4T-1

inner membrane remains intact following Bid/Bax- (Amersham), eluted from glutathione-Sepharose, and further puri-
induced cytochrome c release (Kluck et al., 1999; von fied on Mono Q (Amersham).

Full-length human Bax protein was produced as described (SuzukiAhsen et al., 2000). Moreover, when N/C-Bid and Bax
et al., 2000). For OG-Bax, Bax was oligomerized by the addition ofwere added to mitoplasts (lacking intact outer mem-
0.7% octylglucoside. The final concentration of octylglucoside inbranes), mtHsp70, a soluble protein of the matrix, was
the assay was only 0.035%, and this amount of detergent alone didnot released (T.K. and D.D.N., unpublished). Indeed, this
not produce a detectable release of fluorescein-dextran. Human

impermeability of inner membranes may be important Bcl-xL�C was prepared as described (Muchmore et al., 1996) and
for apoptotic cells to maintain, via oxidative phosphory- further purified on Mono Q. Full-length human Bcl-xL was produced

as a GST-fusion cloned in pGEX 4T-1. BL21(DE3) cells were trans-lation, the ATP levels required for caspase activation.
formed and grown in 2YT to OD600 � 0.7, and protein expressionInterestingly, cardiolipin in the inner membrane may be
was induced with 1 mM IPTG at 25�C for 16–18 hr. Cells were lysedrestricted to the inner leaflet (Daum, 1985) and therefore
by sonication, and the supernatant was incubated with glutathione-inaccessible to Bax even after outer membrane permea-
Sepharose for 1.5 hr at 22�C. The Bcl-xL protein was cleaved off

bilization. In contrast, cardiolipin in the outer membrane GST on the beads using thrombin (50 U/ml, Amersham) for 18 hr at
may reside in the outer leaflet of the bilayer (Hovius et 22�C and purified on Mono Q; the peak fraction was dialyzed in HE

buffer. These proteins were �90% pure electrophoretically.al., 1993), increasing the outer membrane’s sensitivity
to Bax.

Gel Filtration of Bax and Bax/Bid
Bax (0.15 �g) and N/C-Bid (.005 �g) were mixed and incubated forExperimental Procedures
1.5 hr at room temperature, and then this mixture (or Bax alone)
was loaded onto a Superdex 200HR 10/30 column (Amersham) andOrganelle Fractionation
eluted at 0.3 ml/min in 20 mM HEPES (pH 7.4), 150 mM NaCl, 0.2Xenopus egg extracts and mitochondrial (heavy membrane; HM)
mM DTT, �1.2% CHAPS. Fractions were used for Bax immunoblotand light membrane (LM) fractions were prepared as described
or the dextran release assay. With membrane-associated Bax, mem-(Newmeyer et al., 1994; Newmeyer and Wilson, 1991; von Ahsen
brane fractions were isolated with a microfiltration unit (0.1 �mand Newmeyer, 2000).
pores) and solubilized with 100 �l of elution buffer containing 1.2%Outer membrane vesicles (OMVs) from Xenopus egg mitochondria
CHAPS prior to chromatography.were isolated using an adaptation of the method developed for N.

crassa mitochondria (Mayer et al., 1993, 1995), which were observed
Immunoblot Analysisto be mostly right-side out. The HM fraction (200 �l) was diluted
Samples were subjected to SDS-PAGE (12% or 15% gels) and trans-into 4 ml of HE buffer (5 mM HEPES/KOH [pH 7.4] containing 1 mM
ferred to nitrocellulose (BioRad, 0.45 �m). The membranes wereEDTA) for 10 min on ice. The lysate was pelleted at 5000 � g for 5
probed with antibodies to VDAC (1:5000; Calbiochem, 31HL; mito-min, the supernatant was discarded, and the pellet resuspended in 2
chondrial outer membrane), ANT (1:500; a gift from P. Schmid, Uni-ml of HE buffer (this additional hypotonic treatment of mitochondria
versity of Minnesota, USA; inner membrane), or ribophorin (1:200;increased the purity of the OMV preparation) containing 5 mg/ml
a gift from E.B. Lane, University of Dundee, UK; ER membrane).fluorescein-dextran (10 kDa or 2000 kDa; Molecular Probes, D1821
Cytochrome c and Bax were detected with antibodies 65981Aand D7137) for 40 min on ice. LMs were resuspended in 10 pellet
(1:3000; Pharmingen) and N20 (1:1000; Santa Cruz), respectively.volumes of the same buffer with fluorescein-dextran and incubated
After a secondary reaction with horseradish peroxidase-conjugatedon ice for 40 min. The organelle suspensions were homogenized
anti-mouse- or anti-rabbit-Ig antibodies (1:2000; Amersham), thewith 30 strokes of a 2 ml Teflon-glass homogenizer on ice and
membranes were incubated with ECL reagent (Amersham) or (forloaded onto a sucrose step gradient consisting of 0.6 ml of 60%,
Bax) Supersignal West Femto (Pierce) and exposed to the film for2.5 ml of 32%, and 1 ml of 15% sucrose in HE buffer. The gradient
10 s to 1 min.was centrifuged at 115,000 � g in an SW50 rotor (Beckman) for 1

hr at 4�C. The membrane layer at the interface between 32 and
15% sucrose was collected and adjusted to �50% sucrose by the Dextran Release Assay

LMVs or OMVs (2.5 �l) were used in a 50 �l assay mixture in 30%addition of 70% sucrose in buffer. This solution was overlaid with
a flotation sucrose gradient consisting of 2 ml of 32% sucrose and phosphate-buffered saline with recombinant proteins and/or BH3

domain peptides and incubated at 22�C for 3 hr. Carrier protein1 ml of HE buffer. After isopycnic centrifugation in an SW50 rotor
at 115,000 � g for 16–18 hr at 4�C, the purified OMVs or LMVs were (GST, 75 �g/ml) was added to all samples to block nonspecific

losses. After incubation, the released fluorescein-dextran was col-recovered at the interface between the 0% and 32% sucrose layers.
The recovered membranes were diluted 5-fold in HE buffer and lected through either a 100 kDa microfiltration unit (Amicon) or 0.1

�m pore-size filters (Millipore) and detected with a spectrofluoro-pelleted by centrifugation at 147,000 � g for 2 hr in an SW50 rotor
and resuspended in HE buffer. Typical protein concentrations of meter (Photon Technology International) with excitation at 490 nm

and emission at 520 nm. The baseline was taken as the fluorescencethe final OMV and LMV suspensions from the same pellet volume
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obtained with the addition of GST only (75 �g/ml) and 100% release developing solvent. Spots detected after exposure to iodine vapor
were scraped off. Total and individual phospholipids were quantifiedas that obtained after 1% CHAPS solubilization. The efficiency of

permeabilization depended only weakly on the protein/lipid ratio as described (Broekhuyse, 1968).
(not shown).

Formation of Liposomes from Defined Lipid Mixtures
Cytochrome c Release Assay with Xenopus Mitochondria Egg phosphatidylcholine (PC), egg phosphatidylethanoloamine
HMs (4 �l) were added to a 50 �l assay mix consisting of 40 �l of (PE), brain phosphatidylserine (PS), soybean phosphatidylinositol
ELB with 120 mM KCl and 1 �l of BH3-domain peptides from a (PI), and heart cardiolipin (CL) in chloroform (Avanti Polar Lipids)
stock in DMSO or 10 �l of recombinant proteins. After 3 hr at room were mixed in a glass bottle at the molar ratios indicated in the
temperature, 20 �l of the sample was spun at 20,000 � g for 5 min; text. Lipids were dried under nitrogen, resuspended in potassium
10 �l of the supernatant was collected for immunoblot analysis. The phosphate buffer (pH 7.4) at 8 mg/ml, and processed as described
pellet was resuspended in 20 �l of sample buffer and 10 �l of this for M and ER liposomes.
was analyzed by immunoblot with anti-cytochrome c antibody.
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